accueil  >  revues  >  les mécanismes moléculaires de l'apoptose
 


Les mécanismes moléculaires de l'apoptose.

Auteur : Dr. Jean-Ehrland RICCI - INSERM U526. - Nice, France.

Adresse actuelle : La Jolla Institute for Allergy and Immunology, San Diego, California, USA.


Sommaire apoptose   |    I   |    II   |    III   |    Résultats   |    Discussion et Perspectives   |    Bibliographie

I - MÉCANISMES MOLÉCULAIRES DE L'APOPTOSE : ASPECT GÉNÉRAL


I-3. Les Caspases
a) Nomenclature

Comme nous l'avons déjà noté, ced-3 code pour une protéase à cystéine homologue à ICE (Thornberry et al., 1992). Les protéases apoptogènes sont des protéases à cystéine qui possèdent une spécificité stricte de clivage de leur substrats après un résidu d'acide aspartique. Cette spécificité de clivage n'est partagée qu'avec une seule autre protéase, le granzyme B (une sérine protéase présente dans les lymphocytes T cytotoxiques).

Une nouvelle nomenclature proposée par Alnemri et coll. regroupe désormais les protéases apoptogènes sous le nom de CASPASE (TABLE 1). Le C représente la cystéine du centre actif (QACxG) et aspase définit la spécificité stricte de clivage des substrats de cette famille de protéases après un acide aspartique. L'ICE, qui fut chronologiquement la première caspase caractérisée, a donc été tout naturellement rebaptisée caspase 1. À ce jour 14 caspases ont été identifiées mais il ne fait aucun doute que cette liste n'est pas exhaustive.



b) Structure

Toutes les caspases ont une structure très conservée comprenant, un prodomaine N-terminal de taille variable, un domaine qui deviendra après clivage la grande sous-unité (17-21 kDa, qui porte le centre actif) et un domaine qui deviendra après clivage la petite sous-unité (10-14 kDa). Certains membres de la famille des caspases possèdent un domaine de liaison entre la grande et la petite sous-unité. Les prodomaines sont variables, à la fois dans leur taille et dans leur séquence. Ainsi les caspases 3, 6 et 7 ont un petit prodomaine alors que les caspases 1, 2, 4, 5, 8, 9, 10, 11, 12 et 13 possèdent un grand prodomaine. Les caspases à petits prodomaines sont souvent regroupées sous le nom de caspases effectrices. Ces caspases sont activées par des caspases dites initiatrices. Les prodomaines semblent jouer un rôle dans les interactions protéines-protéines. Ainsi les prodomaines des caspases 8 et 10 contiennent des Domaines Effecteurs de Mort Cellulaire (ou Death Effector Domains : DEDs) qui sont des structures permettant la liaison de la caspase aux molécules adaptatrices FADD (Boldin et al., 1995; Chinnaiyan et al., 1995) ou TRADD (Hsu et al., 1995) (cf. chapitre I-5). Certaines autres caspases (caspases 1, 2, 4 et 9) possèdent un Domaine de Recrutement des Caspases (ou Caspase Recruitment Domain : CARD (Hofmann et al., 1997)). Ces CARDs jouent un rôle dans l'interaction entre caspases ainsi qu'avec une grande variété de molécules adaptatrices ou régulatrices (cf. chapitre I-5)



c) Activation

Figure 2
agrandissement

Structure et activation des caspases.
La conversion de la caspase à l'état de zymogène en une enzyme mature nécessite au moins deux clivages au niveau de liaison Asp-X (TABLE 1). Ces clivages successifs ont lieu de manière séquencielle : tout d'abord coupure entre la grande et la petite sous-unité (donc il y a libération de la petite sous-unité du reste de la molécule) suivie par la libération du prodomaine (Figure 2). La caspase va alors pouvoir s'assembler sous sa forme active, composée de deux grandes et de deux petites sous-unités.

La structure générale ainsi obtenue est (p10/p20)2 (Walker et al., 1994; Wilson et al., 1994; Rotonda et al., 1996). Les caspases vont pouvoir s'auto-activer et/ou être activées par d'autre caspases. Cette remarque introduit la notion de cascade d'activation. Ainsi une fois les caspases initiatrices activées, elles vont pouvoir cliver d'autres caspases encore à l'état de zymogène (notamment les caspases effectrices). Ce type d'activation en cascade permet probablement la régulation et l'amplification du signal.


Cette suite d'événements est généralement divisée en trois étapes :

- une étape d'induction qui est réversible

- une étape d'exécution qui est régulable

- une étape de dégradation qui est irréversible.


Certaines études ont décrit la possibilité qu'une sous-unité p10 issue d'un zymogène puisse s'associer avec la sous-unité p20 d'un autre zymogène durant la maturation des précurseurs (Walker et al., 1994; Wilson et al., 1994; Rotonda et al., 1996). Il est à noter que certaines protéases n'ayant pas de spécificité pour un acide aspartique sont capables d'activer les zymogènes des caspases au moins in vitro (Zhou et Salvesen, 1997). Ce clivage intervient au niveau de sites alternatifs situés dans le segment de liaison entre la grande et la petite sous-unité. De plus il a été décrit que la caspase 9 pouvait être activée sans clivage (Stennicke et al., 1999). L'activation et l'activité des caspases peuvent être modulées de différentes façons (par phosphorylation, par exemple). Ce point sera détaillé dans le chapitre I-3-f.



d) Substrats

- GÉNÉRALITÉS

Figure 3
agrandissement

Structure tridimentionnelle des caspases.
Le rôle des caspases est principalement exécutif, c'est-à-dire qu'elles vont s'attacher à éteindre les voies protectrices et à activer des molécules qui vont participer à la destruction cellulaire.

Les caspases sont des enzymes extrêmement sélectives. Ainsi, une analyse sur gel bi-dimentionnel d'extraits obtenus à partir de cellules vivantes ou bien de cellules en apoptose n'a révélé que de faibles modifications dans le profil global ( Robaye et al., 1994; Amess et Tolkovsky, 1995; Gerner et al., 1998; Kaufmann, 1989). Les protéines cibles doivent impérativement posséder un aspartate en position P1 (Sleath et al., 1990; Howard et al., 1991). Cet aspartate sera niché dans une poche (désignée site S1) et sera ainsi alignée avec Arg179, Gln283, Arg341 et Ser347 (numérotation correspondant à la caspase 1). Cette structure est conservée chez toutes les caspases humaines (à l'exception de Ser347 qui est remplacée par une Thr dans la caspase 8) (Figure 3).

La TABLE 2 indique les principaux substrats clivés par les caspases au cours de l'apoptose. Ces protéines cibles regroupent des protéines cytoplasmiques, nucléaires, des protéines impliquées dans le métabolisme et la réparation de l'ADN et des protéines kinases. De plus, des protéines impliquées dans la transduction du signal et dans l'expression de gènes, dans la régulation du cycle cellulaire, la prolifération, dans les maladies génétiques ou des protéines de régulation de l'apoptose sont aussi substrats des caspases (cf. TABLE 2).

Il est toutefois à noter que certains substrats ne sont pas clivés dans tous les types cellulaires. L'actine, par exemple, est clivée dans la lignée myélomonocytaire U937 (Mashima et al., 1997), dans les neurones (Villa et al., 1998) et dans les thymocytes (Villa et al., 1998) mais pas dans les autres types cellulaires durant l'exécution du programme apoptotique (Song et al., 1997; Rice et al., 1998). De plus, certains substrats sont clivés à des sites différents selon le type cellulaire. Ainsi, la topoisomérase I a un profil de clivage différent selon qu'il s'agisse de cellules de cancer de poumon (A549) ou de cellules de cancer du sein (MDA-MB-468) (Samejima et al., 1999). Cette hétérogénéité pourrait soit refléter l'activation de caspases différentes, soit des variations dans l'accessibilité des substrats par les protéases, soit une combinaison de ces deux hypothèses.

Etant donné l'hétérogénéité et le nombre des substrats clivés par les caspases (TABLE 2), j'ai choisi, pour des raisons de clarté et d'adéquation à mon travail de recherche, de ne détailler que les kinases substrats des caspases au cours de l'apoptose.



- PROTÉINES KINASES

Au moins 13 protéines kinases sont clivées durant l'apoptose (cf. TABLE 2). La majeure partie de ces kinases le sont dans leurs domaines régulateurs (ou juste à coté), produisant des formes tronquées constitutivement actives. Ce type de régulation concerne les kinases suivantes : MEKK1 (Cardone et al., 1997; Deak et al., 1998; Widmann et al., 1998), PAK2 (Lee et al., 1997; Rudel and Bokoch, 1997), Mst1/Krs et Mst2 (Graves et al., 1998; Lee et al., 1998), PKCd (Ghayur et al., 1996), PKCq (Datta et al., 1997), PKCb1 (Shao et al., 1997) et PRK2 (Cryns et al., 1997). L'expression des formes tronquées de ces kinases induit une apoptose massive des cellules (Ghayur et al., 1996; Datta et al., 1997; Lee et al., 1997; Cardone et al., 1997; Graves et al., 1998; Widmann et al., 1998). Par exemple, pour les kinases MEKK1, PAK2 et Mst1, l'expression du fragment activé par clivage est pro-apoptotique alors que l'expression d'une forme inactive retarde l'apoptose (Lee et al., 1997; Rudel et Bokoch, 1997 ; Cardone et al., 1997; Widmann et al., 1998). Ces résultats semblent indiquer que ces trois kinases ont pour cibles des protéines essentielles pour la régulation de l'apoptose. Il convient de signaler que ces kinases sont toutes capables d'activer la voie SAPK/JNK (Stress Activated Protein Kinase/Jun N-terminal Kinase) qui conduit à l'exacerbation de la transcription de gènes placés sous le contrôle du facteur de transcription c-Jun. Nous pouvons donc envisager que ces kinases sont clivées dans le but d'activer SAPK/JNK (kinase impliquée dans l'apoptose, (Graves et al., 1998; Lee et al., 1998) (Cardone et al., 1997; Deak et al., 1998). Ceci est d'autant plus vraisemblable que la voie antagoniste, (la voie ERK1 et 2 (Xia et al., 1995)) est régulée négativement durant l'apoptose.

Certains membres de la famille des PKC sont également constitutivement activés par clivage au cours de l'apoptose. Ainsi l'expression de fragments actifs des PKCd et PKCq induit l'apoptose des cellules transfectées (Datta et al., 1997; Ghayur et al., 1996).

Durant ce travail de thèse nous avons identifié la tyrosine kinase p59Fyn comme nouveau substrat des caspases (cf. partie résultat).



e) Invalidation génique

Etant donné le grand nombre de caspases ainsi que l'absence d'inhibiteur réellement sélectif d'une caspase donnée, l'implication individuelle de ces protéases apoptogènes dans la mort cellulaire programmée n'a pu être étudiée jusqu'à présent qu'en générant des animaux déficients pour l'expression de certaines d'entre elles. A ce jour, seuls les gènes codant pour les caspases 1, 2, 3, 8, 9, 11 et 12 ont été invalidés (cf. TABLE 3).



- CASPASES 1 ET 11

Les souris caspase 1-/- et caspase 11-/- présentent un développement normal (Kuida et al., 1995; Li et al., 1995; Wang S. et al., 1998). Cependant, elles présentent une production défectueuse d'IL-1a et b, d'IL-18 et d'interferon-g. De plus, elles présentent une résistance accrue au choc septique. En fait, il semble bien établi que la caspase 1 joue un rôle dans la régulation du système immunitaire mais pas ou peu dans les voies apoptotiques (Kuida et al., 1995; Li et al., 1995). Récemment, il a été décrit que la caspase 1 est activée par une interaction directe avec la caspase 11 (caspase murine) (Wang S. et al., 1998). La caspase 11 présente des homologies avec les caspases humaines 4 et 5.

- CASPASE 2

Les souris caspase 2-/- présentent un développement normal jusqu'à l'âge adulte et ne présentent aucun phénotype sévère (Bergeron et al., 1998). En revanche, la caspase 2 semble être requise pour la mort des cellules germinales femelles. De plus, les ovocytes de ces souris présentent une résistance à l'apoptose induite par des agents chimiothérapeutiques. A la naissance, les souris déficientes présentent une diminution du nombre de motoneurones faciaux. Ceci nous indique que la caspase 2 n'agit pas simplement comme un effecteur positif de l'apoptose mais qu'elle est aussi capable, selon le type cellulaire, de retarder la mort cellulaire. Cette différence pourrait s'expliquer par la présence de deux formes de caspase 2 obtenues par épissage alternatif. Ainsi, il a été montré que Casp2L (Long) induit l'apoptose alors que Casp2S (Small) inhibe l'apoptose (Wang L. et al., 1994). Enfin, les lymphoblastes B de souris caspase 2-/- sont plus résistants à l'action combinée de la perforine et du granzyme B mais ne présentent pas de sensibilité moindre à l'apoptose induite par un anticorps anti-Fas, l'étoposide, la staurosporine ou les rayonnements g

En définitive, la caspase 2 est probablement essentielle pour l'apoptose des cellules germinales femelles mais elle peut toutefois, dans certaines situations, avoir un effet protecteur contre l'apoptose. De plus, l'action de la caspase 2 semble être dépendante du type cellulaire, du stade de développement, de l'épissage de son ARNm ainsi que de la présence ou de l'absence d'autres caspases.



- CASPASE 3

Les souris invalidées pour la caspase 3 furent les premières à présenter des profonds bouleversements de l'apoptose (Kuida et al., 1996; Woo et al., 1998). Elles sont plus petites que les souris contrôles et meurent entre la première et la troisième semaine après la naissance. De manière surprenante, il s'est avéré que le phénotype de ces souris est extrêmement restreint. En effets, les anomalies les plus marqués semblent sélectivement localisés au niveau du système nerveux central. Ainsi les animaux caspase 3-/- souffrent d'une hyperplasie cérébrale massive. Les thymocytes issus de ces souris peuvent initier un programme apoptotique normal en réponse à un anticorps anti-Fas, à la dexamethasone, au céramide-C2, à la staurosporine et aux rayonnement-g (Kuida et al., 1996; Woo et al., 1998). En revanche, la caspase 3 semble être requise pour l'apoptose des neutrophiles et des lymphocytes T activés (Woo et al., 1998). De plus, des études ont décrit que la caspase 3 n'était pas requise pour le clivage de PARP (Kuida et al., 1996; Woo et al., 1998) ou la liaison à l'annexine V (qui reconnait spécifiquement les résidus phosphatidylsérine) mais qu'elle était absolument nécessaire à la dégradation internucléosomale de l'ADN ainsi qu'à la condensation de la chromatine (Woo et al., 1998). Il a été également décrit que les lymphocytes T périphériques de ces souris étaient insensibles à l'AICD (Activation Induced Cell Death, cf. chapitre III-2a) ainsi qu'à l'apoptose induite par un anticorps anti-CD3 (dirigé contre la partie monomorphique du récepteur T) ou un anti-Fas (Woo et al., 1998).

En définitive, il semble que l'implication de la caspase 3 dépende du type de stimulus apoptotique considéré. De plus, il existe une spécificité tissulaire. Ainsi, un traitement au TNFa induit une apoptose normale des thymocytes issus de souris caspase 3-/- alors que les fibroblastes transformés y sont résistants (Woo et al., 1998). Ceci souligne que la caspase 3 pourrait jouer un rôle différent selon le type de cellules et de stimuli considérés.



- CASPASE 8

Les souris caspase 8-/- se développent normalement durant les 11 premiers jours suivant la fécondation, puis meurent, probablement des suites de malformations cardiaques importantes. Le cœur de ces animaux est hypotrophique, suggèrant que la caspase 8 pourrait être impliquée dans la transmission des signaux de survie plutôt que des signaux de mort, au moins au niveau de cet organe. De plus, ces embryons produisent très peu de précurseurs myéloïdes (Varfolomeev et al., 1998). Les fibroblastes embryonnaires de ces souris sont insensibles aux effets cytotoxiques initiés par Fas, TNF-RI ou DR3 mais restent sensibles à la déprivation en facteurs de croissance, aux radiations U.V., au céramide et à l'étoposide (Varfolomeev et al., 1998). Les fibroblastes embryonnaires répondent normalement aux signaux non apoptotiques émanant des récepteurs de mort et sont capables d'activer la voie JNK ainsi que le facteur de transcription NF-kB de manière équivalente aux cellules sauvages.

En définitive, ces résultats indiquent non seulement que la caspase 8 est un élément essentiel et non redondant de l'apoptose initiée par les récepteurs de mort, mais aussi qu'elle joue un rôle essentiel (et à ce jour grandement incompris) dans le développement cardiaque et dans l'hématopoïèse.



- CASPASE 9

Le phénotype de ces souris est semblable mais cependant plus sévère que celui des souris caspase 3-/- (V-kuida98 et V-hakem98). Elles meurent au 16ème jour de développement. Elles souffrent de malformation cérébrale avec un excès cellulaire au niveau du système nerveux central. On note environ 10 fois moins de cellules TUNEL positives (i.e. apoptotiques) dans les cerveaux des souris invalidées au stade E12,5 par rapport à des souris contrôles. Ce phénotype est aussi partagé par les souris Apaf-1-/- (cf. chapitre I-4). De plus, il existe une absence d'activation de la (Hakem et al., 1998; Kuida et al., 1998) caspase 3 in vivo dans le cerveau mais cette activation se produit normalement dans les tissus ectodermiques et méningés (Kuida et al., 1998). Contrairement au cerveau, certains organes comme le cœur, le poumon, le foie mais aussi la colonne vertébrale présentent un développement normal. Les cellules ES ou les fibroblastes embryonnaires de ces souris libèrent le cytochrome c de leurs mitochondries suite à une irradiation aux U.V. Cependant, dans ces conditions, la caspase 3 n'est pas activée (Hakem et al., 1998). De plus, des extraits de cellules nerveuses ou de thymocytes issus de souris caspase 9-/- n'autorisent pas l'activation de la procaspase 3 lorsqu'ils sont incubés en présence de cytochrome c et de dATP (Kuida et al., 1998).

En définitive, le fait que les souris invalidées pour la caspase 3, la caspase 9 ou Apaf-1 présentent toutes un phénotype très semblable indique que ces molècules interviennent probablement dans une voie commune au cours de l'apoptose.



- CASPASE 12

Les souris invalidées pour la caspase 12 ne présentent aucun défaut apparent du développement. Les thymocytes de ces souris répondent de manière comparable aux cellules contrôles lorsqu'elles sont stimulées par un anticorps anti-Fas ou par la dexaméthasone (Nakagawa et al., 2000). Il semble donc que la caspase 12 ne soit pas essentielle pour l'apoptose induite par Fas. Des études par microscopie confocale suggèrent que la pro-caspase 12 est principalement localisée dans le réticulum endoplasmique. La pro-caspase 12 est activée lorsque les cellules sont traitées avec des agents capables d'induire un stress du réticulum endoplasmique (RE) (tunicamycine par exemple, (Welihinda et al., 1999)). Ainsi, les auteurs ont montré que la tunicamycine provoquait l'apoptose des cellules épithéliales rénales des souris contrôles mais pas des souris invalidées pour le gène de cette caspase. La même étude montre que les neurones des souris caspase 12-/- sont moins sensibles à la toxicité induite par la protéine amyloïde-b (Ab). Il a été montré que la protéine Ab possédait des récepteurs localisés dans le RE et qu'elle était capable d'induire un processus apoptotique, mécanisme qui pourrait jouer un rôle dans la maladie d'Alzheimer.

En définitive, la caspase 12 semble être essentielle pour l'apoptose induite par un stress au niveau du RE ou pour la mort neuronale induite par la protéine Ab ce qui en fait une cible pharmacologique potentielle.



Toutes ces études menées sur les souris dont le gène de différentes caspases a été invalidé ont permis d'établir les notions suivantes :

i) aucune de ces invalidations géniques n'est capable d'inhiber totalement l'apoptose au cours du développement. En fait, les phénotypes les plus sévères sont obtenus avec les souris caspase 3-/- et caspase 9-/- qui possèdent des anomalies cérébrales majeures, cependant tous les autres tissus embryonnaires ne présentent que peu ou pas de différence avec les souris contrôles.

ii) quelle que soit la caspase considérée, les effets sur l'apoptose sont à la fois dépendants du type cellulaire et du stimulus utilisé. Ainsi, le jeu de caspases impliquées est probablement différent selon l'effecteur et le tissu considérés.



f) Régulation

Etant donné les effets dévastateurs que pourraient avoir une activation inopportune des caspases, il n'est pas surprenant que cette étape soit étroitement modulée. En fait, non seulement l'activation mais aussi l'activité et la production des caspases sont régulées à plusieurs niveaux.



- RÉGULATION TRANSCRIPTIONNELLE

Bien que l'apoptose puisse se produire dans la majorité des types cellulaires en absence d'ARNm et de synthèse protéique (Kaufmann et al., 1993; Weil et al., 1996), plusieurs observations suggèrent que la régulation de l'expression des gènes de procaspases puisse avoir une importance dans certaines conditions. Ainsi, bien que les ARNm de procaspases soient clairement détectables dans la plupart des types cellulaires (Patel et al., 1996; Henkart, 1996; Takahashi et Earnshaw, 1996; Thornberry et al., 1997)), les niveaux de zymogènes sont très différents d'un type cellulaire à l'autre. La caspase 3, par exemple, est fortement exprimée dans de nombreuses cellules lymphoïdes et myéloïdes matures alors qu'elle n'est que faiblement présente dans l'épithélium mammaire et dans les neurones normaux (Krajewska et al., 1997). De plus, le niveau d'expression de ces zymogènes n'est pas statique. Des études ont décrit que dans des conditions d'induction de l'apoptose, des neurones (in vitro) ainsi que des cerveaux de souris (in vivo) exprimaient des niveaux d'ARNm de la caspase 3 plus élevés. Lorsque des cellules leucémiques humaines sont incubées en présence d'étoposide (inhibiteur de la topoisomérase II), le niveau d'expression de plusieurs messagers de procaspases croît significativement (Droin et al., 1998).

L'interféron-g est un des facteurs ayant une grande influence sur l'expression des gènes de plusieurs caspases. Un traitement des cellules U937 à l'interféron-g augmente très sensiblement l'expression de caspases ainsi que la sensibilité de ces cellules à l'apoptose (Tamura et al., 1996). Le mode d'action de l'interféron-g sur la régulation de l'expression génique des caspases reste, à ce jour, toujours énigmatique.



- INHIBITEURS NATURELS

Les virus ont développé diverses stratégies très efficaces afin d'inhiber la mort cellulaire et la libération de cytokines pro-inflammatoires par les cellules infectées dans le but d'achever son cycle de réplication et ainsi d'infecter de nouvelles cellules. À ce jour, de nombreuses molécules virales, cellulaires animales et même végétales (pour revue (Thatte et al., 2000)), ont été décrites comme ayant une activité inhibitrice de l'apoptose.



- p35 et CrmA

p35 est une des protéines de baculovirus. Elle est capable d'inhiber une grande variété de caspases (cf. TABLE 1) mais n'exerce pas d'effet inhibiteur sur le granzyme B. CrmA (Cytokine response modifier A) est issu d'un gène précoce du cowpox virus (virus de la vaccine). CrmA a un effet inhibiteur sur l'inflammation ainsi que sur le recrutement des macrophages aux sites de l'infection (Palumbo et al., 1989). Sa surexpression permet d'inhiber l'apoptose induite par la déprivation en facteur de croissance, CD95 ou le TNF (Gagliardini et al., 1994; Tewari et Dixit, 1995). CrmA inhibe l'activité protéolytique des caspases 1, 8 et dans une moindre mesure la caspase 6 (cf. TABLE 1). D'autres caspases, comme la 3 ou 7, ne sont que peu affectées par cette molécule (Nicholson et al., 1995; Zhou et al., 1997). Ces deux protéines virales (CrmA et p35) sont des inhibiteurs compétitifs. Une fois clivées par une caspase, elles vont se lier à ces enzymes et ainsi empêcher la dégradation de nouveaux substrats (Komiyama et al., 1994; Bump et al., 1995).



- FLIP, protéine E8, MC159 et MC160

Il existe une famille de récepteurs spécialisés dans l'induction de l'apoptose : les récepteurs de mort (cf. chapitre I-5). Brièvement, la stimulation de ces récepteurs va conduire au recrutement de molécules adaptatrices puis au clivage du zymogène de caspases initiatrices (caspases 8 et 10) et enfin, à l'activation des caspases effectrices. Cette étape de recrutement peut être régulée par une protéine appelé, selon les auteurs, FLIP (Irmler et al., 1997) /I-FLICE (Hu et al., 1997) /CASH (Goltsev et al., 1997) /Flame-1 (Srinivasula et al., 1997) /CLARP (Inohara et al., 1997) /MRIT (Han D.K. et al., 1997) ou usurpin (Rasper et al., 1998). FLIP (FLICE inhibitory protein) contient deux domaines effecteurs de mort cellulaire (DEDs) qui vont lui permettre de se lier aux prodomaines des caspases 8 ou 10 et ainsi empêcher leur recrutement aux récepteurs de mort (notamment Fas et TNF-RI) (Bump et al., 1995). Cette famille d'inhibiteurs de caspases a été, à l'origine, identifiée chez le virus de l'herpès et le virus molluscipox (Bertin et al., 1997; Thome et al., 1997). Il existe une grande variété de transcrit de FLIP (Yuan et al., 1993; Komiyama et al., 1994; Bump et al., 1995; ). Le transcrit le plus long (FLIPL) possède, en plus des deux DEDs, l'équivalent d'un domaine caspase inactif. La forme courte, pour sa part, ne présente que les deux DEDs. FLIP a été décrit comme pouvant protéger de l'apoptose (Hu et al., 1997; Irmler et al., 1997; Srinivasula et al., 1997; Rasper et al., 1998) ou induire l'apoptose (Han D.K. et al., 1997; Inohara et al., 1997; Shu et al., 1997) selon la nature du transcrit et le type cellulaire considéré. Cependant, dans des conditions physiologiques, FLIP semble fonctionner comme un inhibiteur de la procaspase 8. Ainsi, il a été suggeré que la sensibilité des cellules T à l'apoptose induite par Fas était corrélée avec la diminution du taux d'ARN messager de FLIP (Irmler et al., 1997; Refaeli et al., 1998).

En définitive, il apparaît que le rôle de FLIP dans la modulation de l'apoptose semble très complexe. Son effet pro ou anti-apoptotique apparait, une fois de plus, dépendre de la nature du transcrit, du type cellulaire considéré ainsi que du niveau d'expression de chacune des isoformes.



- La protéine E8 (issue du virus équin de l'herpès de type II, ainsi que MC159 et MC160 (issues du virus Molluscum contagiosum) utilisent une stratégie similaire afin d'inhiber l'apoptose. En effet, ces protéines possèdent, tout comme FLIP, deux DEDs qui leur permettent d'inhiber le recrutement des procaspases 8 et 10 à leurs récepteurs (Duckett et al., 1996; Uren et al., 1996; Deveraux et al., 1997).



- Bcl-2 and co

Il est maintenant bien établi que la grande famille des protéines homologues à Bcl-2 joue un rôle majeur dans la régulation de l'apoptose. Cette régulation passe par la modulation de l'activité de certaines caspases, principalement la caspase 9. Ainsi, en empêchant la libération du cytochrome c par la mitochondrie, Bcl-2 et Bcl-XL par exemple, inhibent la formation du complexe Apaf-1/cytochrome c/caspase 9 qui est nécessaire à l'apoptose. Ces différents points seront détaillés dans les chapitres I-4 et I-6.



- Les IAPs

Les baculovirus possèdent une autre protéine capable d'inhiber l'apoptose : IAP pour inhibitor of apoptosis. Au moins 5 homologues ont été identifiés chez les mammifères. Il s'agit de NAIP (Liston et al., 1996) ; cIAP-1 (Rothe et al., 1995) /hIAP-2 (Liston et al., 1996) /MIHB (Uren et al., 1996) ; cIAP-2 (Rothe et al., 1995) /hIAP-1 (Liston et al., 1996) /MIHC (Uren et al., 1996) ; XIAP (Liston et al., 1996) /hILP (Duckett et al., 1996) /MIHA (Uren et al., 1996) et la survivine (Liston et al., 1996). L'effet protecteur des IAPs est dû à leur capacité à inhiber l'activation et donc l'activité de certaines caspases. Ainsi, XIAP, cIAP-1 et cIAP-2 inhibent les caspases 3, 7 et 9 mais pas les caspases 1, 6 et 8 (Deveraux et al., 1997; Roy et al., 1997; Deveraux et al., 1998). NAIP, pour sa part, est incapable d'inhiber les caspases 1, 3, 6, 7 ou 8 (Roy et al., 1997). Les IAPs, à l'exception de la survivine, sont caractérisées par 3 domaines BIRs (baculovirus IAP repeats) dans leur partie N-terminale et un domaine d'interaction protéine-protéine contenant un atome de zinc (RING finger) dans leur partie C-terminale. La survivine ne contient que les domaines BIRs. Différentes études ont montrées que seul BIR2 était requis pour inhiber les caspases 3 et 7 et que le domaine RING n'était pas nécessaire (Deveraux et al., 1997; Takahashi et al., 1998). De plus, il semble que cIAP-1 et cIAP-2 puissent se lier à TRAF-1 et 2 (TNF-R associated factors) grâce à leur motif BIR (Rothe et al., 1995; Roy et al., 1997). Ceci implique que les cIAPs, ainsi que les vIAPs (Vucic et al., 1998), puissent exercer des effets inhibiteurs sur l'activation des caspases en aval des récepteurs de mort (Wang C.Y. et al., 1998). Par ailleurs cIAP-1, cIAP-2 et XIAP ont été décrit comme des inducteurs de l'activation de NF-kB (Chu et al., 1997). Ceci pourrait notamment contribuer à l'effet protecteur de NF-kB sur l'apoptose induite par le TNFa (You et al., 1997; Stehlik et al., 1998; Wang C.Y. et al., 1998).

Tout dernièrement, une nouvelle protéine nommée selon les auteurs Diablo (Verhagen et al., 2000) ou Smac (Du et al., 2000) a été décrite (Figure 3bis). Cette protéine, une fois synthétisée est importée dans la mitochondrie. Au cours le l'apoptose, Diablo/Smac est libérée et se lie aux IAPs empêchant leur action protectrice et permettant ainsi aux caspases contenue dans l'apoptosome de s'activer. Il est à noter que Diablo/Smac est particulièrement abondant dans le cœur, le fois et les testicules et très peu présent dans les autres tissus, impliquant l'existence probable d'autres protéines homologues.



- PAR PHOSPHORYLATION

De nombreuses études ont rapporté que l'apoptose pouvait être régulée par des protéines kinases et des protéines phosphatases (Anderson, 1997; Downward, 1998; Martins et al., 1998). L'étude de Martins et coll. en 1998 indique que les caspases peuvent être phosphorylées in vivo. Bien que cette phosphorylation puisse affecter leur activité enzymatique, au moins in vitro, il reste cependant à démontrer si la phosphorylation module l'activité des caspases in vivo. De plus, lorsqu'un extrait protéique de cellule en apoptose est analysé sur gel bi-dimensionnel, après un marquage d'affinité, il apparaît plusieurs formes des caspases actives 3 et 6, certaines ne différant que par leur charge (Faleiro et al., 1997; Martins et al., 1997; Martins et al., 1997a). Dans le même ordre d'idée, un marquage métabolique de cellules au phosphate 32P, suivi d'un stimulus pro-apoptotique, a révélé que plusieurs caspases contenaient un radioélément (Martins et al., 1998). La même étude a montré que la déphosphorylation des caspases était corrélée à une augmentation de leur capacité à cliver PARP, impliquant la possibilité que la phosphorylation puisse inhiber le clivage de certains substrats par ces protéases. Une autre étude indique que la kinase Akt peut phosphoryler la procaspase 9 humaine et ainsi inhiber son activation (Cardone et al., 1998). D'autre part, cette même étude montre que la kinase Akt est incapable de phosphoryler les caspases 3, 6 ou 7.

À ce jour, la nature de la (ou des) kinase(s) responsable(s) de la phosphorylation des caspases effectrices ainsi que le rôle physiologique de cette modification post-traductionnelle restent à élucider.



g) " Apoptose " caspase indépendante

L'utilisation d'inhibiteurs spécifiques des caspases a montré que les cellules peuvent mourir aussi bien par des mécanismes impliquant les caspases que par des mécanismes indépendants des caspases. Par exemple, la surexpression de Bax (membre pro-apoptotique de la famille Bcl-2) conduit à l'activation des caspases et à la mort cellulaire (Xiang et al., 1996). Cependant, l'inhibiteur général des caspases zVAD-fmk, bien qu'étant capable d'inhiber l'activation des caspases, s'est avéré incapable d'empêcher la mort cellulaire induite par Bax (Xiang et al., 1996). Ce type de mort cellulaire est insolite. En effet il y a, à la fois, une chute du potentiel mitochondrial (cf. apoptose) mais aussi une absence de dégradation de l'ADN ainsi qu'une perte de l'intégrité membranaire, ce dernier point étant reminiscent de la nécrose plutôt que de l'apoptose. De nombreux stimuli, comme la déprivation en sérum (Mills et al., 1998), la surexpression des oncogènes myc et E1A (McCarthy et al., 1997) ou de Bak (McCarthy et al., 1997), les dommages à l'ADN (McCarthy et al., 1997)... sont également capables d'induire une mort cellulaire qui ne peut pas être bloquée par des inhibiteurs de caspases. Dans tous ces cas, les cellules meurent selon un processus proche de la nécrose, sans présenter les modifications nucléaires spécifiques de l'apoptose (Hirsch et al., 1997; Mills et al., 1998; Monney et al., 1998). Toutefois le bourgeonnement de la membrane plasmique de ces cellules est observé de la même façon qu'au cours de l'apoptose (McCarthy et al., 1997; Mills et al., 1998).

page précédente Les mécanismes moléculaires de l'apoptose page suivante

Sommaire apoptose   |    I   |    II   |    III   |    Résultats   |    Discussion et Perspectives   |    Bibliographie
haut de page


Cours de biologie  |  Articles de revue  |  Études  |  Offres d'emplois  |  Pense-bête  |  Sélection de livres  |  Nouveautés livres  |  Liens  |  Forum


  © 123bio.net - Tous droits réservés.